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Abstract

A new exact approach which combines the basic solutions with unit matrix property and recurrence formula for
determining natural frequencies and mode shapes of non-uniform shear beams is presented in this paper. The
function for describing the distribution of mass is arbitrary, and the distribution of shear sti�ness is expressed as a
functional relation with the mass distribution and vice versa. The governing equation for free vibration of a non-

uniform shear beam is reduced to a di�erential equation of the second-order without the ®rst-order derivative by
means of functional transformation. Then, this kind of di�erential equation is reduced to Bessel equations and other
solvable equations for six cases. The exact solutions of mode shape functions are thus found. The basic solutions,

which have a unit matrix property, are derived and used to obtain the frequency equations and mode shapes of
multi-step shear beams with varying cross-sections. Numerical examples show that the calculated natural frequencies
and mode shapes of two symmetric buildings are very close to the corresponding ®eld measured data, suggesting

that the proposed methods are applicable to engineering application and practice. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

It has been recognized that the lateral de¯ection of most buildings is not purely ¯exural, but there is a
considerable contribution from shear de¯ections in most cases. If shear deformation is dominated in the
total deformation of buildings in their horizontal vibrations, such structures are usually called shear-type
buildings. The ®eld measured data (e.g., Korqingskee, 1953; Wang, 1958; Ishizaki and Hatakeynan,
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1964; Li et al., 1994; Jeary, 1997) have shown that the shear deformation is usually dominant in the
total deformation of frame buildings and multi-story brick buildings in their horizontal vibrations.
Korqingskee (1953) investigated free vibration of frame buildings which were considered as a multi-step
cantilever shear beam and in which, each step of the beam has constant mass and sti�ness. Wang (1958)
suggested that frame buildings can be simpli®ed as a one-step shear beam with continuously varying
cross-section for free vibration analysis. He assumed that the mass of the shear beam is proportional to
its sti�ness. However, this assumption is not suitable for many multi-story buildings. This is due to the
fact that the mass of ¯oors is a major part of the total mass of a multi-story building, and the variation
of mass at di�erent ¯oors is not signi®cant. Thus, the distribution of mass with height is not necessarily
proportional to that of the sti�ness. Wang (1978) simpli®ed frame buildings as a special shear beam
with uniform mass, but variable sti�ness in free vibration analysis. He derived analytical solutions for
such problems. Wang (1978) and Cao et al. (1992) investigated free vibration of a one-story industrial
building. They considered such a building as a uniform shear beam with rectilinear springs representing
the elastic supports of the closely spaced columns to the roof system of the building. Li et al. (1994,
1996, 1998) proposed a general approach for determining natural frequencies and mode shapes of multi-
story buildings which were treated as a one-step or a multi-step cantilever shear beam, or a spring-free
shear beam (Li et al., 1994), with continuously varying cross-section, and the mass distribution of such a
beam, in general, is not proportional to that of the shear sti�ness. The expressions for describing the
distributions of mass and sti�ness were selected as power functions or exponential functions. The exact
solutions were obtained. A review of technical literature dealing with this problem indicates that
generally the authors of the previous studies have directed their investigations to special functions for
describing the distributions of mass per unit length and shear sti�ness in order to derive closed-form
solutions.

Panayatounakos (1994) obtained classes of analytical solutions for the linear ordinary di�erential
equation of variable coe�cients governing the stability analysis of bars with varying cross-section.
However, exact analytical solutions for free vibration of non-uniform shear beams with arbitrary
distribution of mass or sti�ness have not been obtained in the literature. The objective of this paper is
to present a new exact approach for determining the natural frequencies and mode shapes of one-step
and multi-step non-uniform shear beams with concentrated masses and rectilinear springs. The exact
approach combines the basic solutions with unit matrix property and recurrence formulae developed in
this paper. The mass distribution of a non-uniform shear beam considered in this paper is arbitrary, and
the sti�ness distribution is a functional expression of the mass distribution and vice versa. Thus, classes
of useful solutions in engineering practices are obtained. The numerical examples presented in this paper
show that the proposed procedure is an exact method, and with the proposed procedure, there is no
need to take any matrix multiplication for free vibration analysis of a multi-step non-uniform beam with
many translational springs.

Apart from the several analytical methods for analyzing limited classes of non-uniform beams or bars,
many approximate methods have been developed. These include the Ritz method, the ®nite strip method
(FSM) and the ®nite element method (FEM). In general, the Ritz method can provide accurate
solutions, however, it depends on the choice of global admissible functions. Liew et al. (1997) and (1998)
have developed e�cient three-dimensional Ritz algorithms for the free vibration analysis of elastic solid
cylinders. Their method that was developed based on a global three-dimensional elasticity energy
principle with polynomial-based displacement shape functions is capable of extracting all possible modes
of vibration for elastic solid cylinders. Their work provided useful benchmarking reference for research
development in simpli®ed beam theories because three-dimensional analysis is an important base for
exact comparison studies. The FEM and FSE have been developed and widely applied to vibration
analysis of various non-uniform structural members over the years. Compared with FEM, the main
advantage of FSE is its e�ciency, in particular, for structural members with regular geometry.
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It is necessary to point out that only symmetric buildings may be reasonably simpli®ed as shear
beams for dynamic analysis. As pointed by Wilkinson and Thambiratnam (1995), asymmetric buildings
are torsionally unbalanced and display complex interaction between the lateral and torsional
components of their response. Numerical methods are widely used in dynamic analysis of asymmetric
buildings. Extensive work on the vibration response of asymmetric buildings has been carried out by
Thambiratnam and Irvine (1989), Wilkinson and Thambiratnam (1995), and simple three-dimensional
computer models based on energy methods that are useful to practicing engineers for design purposes,
have been developed by them.

In fact, the free vibration of non-uniform beams with arbitrary distribution of mass or sti�ness can be
analyzed using numerical methods (e.g., FEM). However, the present exact solutions that can be easily
implemented could provide adequate insight into the physics of the problem and supplement the existing
database, and further serve as the benchmark for researchers and engineers to examine the merits of
new numerical method and development in this ®eld. Therefore, it is always desirable to obtain exact
solutions to such problems.

2. Solutions for one-step non-uniform shear beams

The governing di�erential equation for mode shapes of a one-step shear beam can be written as (Li et
al., 1994)

d

dx

�
K�x�dX�x�

dx

�
� �m�x�o 2X�x� � 0 �1�

in which X�x�, K�x�, �m�x� and o are the mode shape function, shear sti�ness, mass per unit length and
circular natural frequency of the shear beam, respectively.

In order to solve Eq. (1) for an arbitrary distribution of shear sti�ness or mass, it is assumed that

K�x� � arbitrary, �m�x� � K ÿ1�x�p�r�, r �
�
K ÿ1�x�dx, X�x� � X�r� �2�

or

�m�x� � arbitrary, K�x� � �mÿ1�x�p�r�, r �
�
K ÿ1�x�dx, X�x� � X�r� �3�

Substituting Eq. (2) or (3) into Eq. (1), we have

d2X�r�
dt2

� o2p�r�X�r� � 0 �4�

It is noted that r is a function of x, and p(r ) is a functional expression. Thus, the solution of Eq. (4)
represents a class of solution. On the other hand, it is easier to ®nd the exact solution of Eq. (4) than
solving Eq. (1). It is decided to derive the solution of Eq. (4). However, the solutions of X(r ) are
dependent on the expression of p(r ). Several important cases are considered and discussed as follows.

Case 1.

p�r� � a ebr ÿ c, c > 0 �5�
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where a, b, c are parameters which can be determined by the values of �m�x� and K�x� according to the
relations given in Eq. (2) or (3).

Substituting Eq. (5) into Eq. (4) gives that

d2X�r�
dr2

� o2
ÿ
a ebr ÿ c

�
X�r� � 0 �6�

The above equation can be reduced to a Bessel equation by the substitutions

z � ebr=2 �7�
as follows

d2X

dz2
� 1

z
dX

dz
�
 
a2 ÿ n2

z2

!
X � 0 �8�

in which

a � 2oa1=2

jbj , n � 2oc1=2

jbj �9�

jbj represents the absolute value of b.
The general solution of Eq. (8) can be written as

X �
�
c1Jn�a ebr=2 � � c2Jÿn�a ebr=2 �, n � a non-integer

c1Jn�a ebr=2 � � c2Yn�a ebr=2�, n � an integer
�10�

where c1 and c2 are constants of integration, which can be determined according to the boundary
conditions of the shear beam. Jn and Yn are Bessel functions of the ®rst, second kind of order v,
respectively.

If c � 0, then

X � c1J0�a ebr=2� � c2Y0
�a ebr=2 � �11�

If b = c =0, then p�r� � a, which corresponds to a uniform shear beam. The general solution for mode
shapes of a uniform shear beam can be expressed as

X � c1 sin

� ����
�m

p

K
ox

�
� c2 cos

� ����
�m

p

K
ox

�
�12�

where �m and K are the mass per unit length and shear sti�ness, respectively.

Case 2.

p�r� � �a� br�c �13�
where a, b, c are constants which can be determined by the values of �m�x� and K�x� at control sections.

Substituting Eq. (13) into Eq. (4) we have

d2X�r�
dr2

� o2�a� br�cX�r� � 0 �14�
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Using the following functional transformation

X � znZ, z � �a� br�1=2n �15�

Eq. (14) is reduced to a Bessel equation of order n as follows:

d2Z

dz2
� 1

z
dZ

dz
�
 

�a2 ÿ n2

z2

!
Z � 0 �16�

in which

�a � 2no
jbj , n � 1

c� 2
�17�

The mode shape function can be expressed as

X �
8<: �a� br�1=2

�
c1Jn

�
�a�a� br�1=2

�
� c2Jÿv

�
�a�a� br�1=2

�	
, n � a non-integer

�a� br�1=2
�
c1Jn

�
a�a� br�1=2

�
� c2Yn

�
�a�a� br�1=2

�	
, n � an integer

�18�

If c � ÿ2, then Eq. (14) becomes an Euler equation, the general solution of which can be written as

X �

8>><>>:
�a� br�1=2

�
c1 sin

�
~a ln�a� br�

�
� c2 cos

�
~a ln�a� br�

�	
for 4o2 ÿ b2 > 0

c1�a� br�1=2�~a�c2�a� br�1=2ÿ~a
for 4o2 ÿ b2 < 0

c1�a� br�1=2�c2�a� br�1=2 ln�a� br� for 4o2 ÿ b2 � 0

�19�

where

~a � j4o
2 ÿ b2j1=2
2jbj �20�

Case 3.

P�r� � a�1� br�c �21�

This case is an alteration of Case 2. The mode shape function can be written as

X �
8<: �1� br�1=2

�
c1Jn

�
l�1� br�1=2n

�
� c2Jÿn

�
l�1� br�1=2n

�	
n � a non-integer

�1� br�1=2
�
c1Jn

�
l�1� br�1=2n

�
� c2Yn

�
l�1� br�1=2n

�	
n � an integer

�22�

where

l � 2ona1=2

jbj
If c � ÿ2,n � 1, then, the solutions, Eq. (22), are not valid for this case. The expression of mode shape
function for this case is similar to that given in Eq. (19).
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Case 4.

P�r� � ae2
ÿ
r2 � b

�ÿ2
a > 0, b > 0 �23�

The mode shape function for this case is given by

X �
ÿ
r 2 � b

�1=2�c1 sin x� c2 cos x� �24�

where

x �
�
ae2 � b

b

�1=2

arctan
r

b1=2
�25�

Case 5.

P�r� � ae2�r2 ÿ b�ÿ2 a > 0, b > 0 �26�

The mode shape function for this case is given by

X � �bÿ r2 �1=2�c1 sin x� c2 cos x� �27�

where

x � 1

2

�
ae2 ÿ b

b

�1=2

ln
b1=2 � r

b1=2 ÿ r
�28�

Case 6.

p�r� � ÿce2
�
r2 ÿ �a� b�r� ab

�ÿ2 �29�

The mode shape function for this case is as

X � jrÿ aj
1�g
2

�
c1jrÿ bj

1ÿg
2 � c2jrÿ bj

1�g
2

�
�30�

where

g2 � 4ce2

�aÿ b�2
� 1 6�0, a 6�b

When we select the expression of p(r ), we should consider that not only the solution of Eq. (4) can be
expressed in a closed-form, but also the actual distributions of shear sti�ness and mass can be exactly or
approximately described by p(r ).

In order to establish the frequency equations for various boundary conditions, it will be convenient to
express all the above solutions as a uni®ed form

X � c1S1�x� � c2S2�x� �31�
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where S1�x� and S2�x� are special solutions of mode shape functions which can be determined from Eqs.
(10)±(30).

Based on the linearly independent special solutions, S1�x� and S2�x�, in order to simplify the analysis,
the linearly independent basic solutions, �S1�x� and �S2�x�, which have a unit matrix property at the origin
of co-ordinate system24 �S1�0� �S

0
1
�0�

�S2�0� �S
0
2
�0�

35 � � 1 0
0 1

�
�32�

can be easily constructed by�
�S1�x�
�S2�x�

�
�
�
S1�0� S 01�0�
S2�0� S 02�0�

�ÿ1�
S1�x�
S2�x�

�
�33�

where

�S
0
i
�0� � dSi�x�

dx
jx�0 i � 1, 2 �34�

In general, the mode shape function of a one-step beam can be expressed in terms of the basic solutions
as follows

X�x� � X0
�S1�x� � Q0

K�0�
�S2�x� �35�

whereX0 � X�0� and Q0 � Q�0� are the displacement and shear force of the shear beam at x � 0,
respectively.

The frequency equation can be easily established by using the basic solutions of mode shape functions
and the boundary conditions of the beam as follows

1. Fixed-free beam. If a shear beam is ®xed at the left end, then X0 � 0, the mode shape function, Eq.
(35), becomes

X�x� � Q0

K�0�
�S2�x� �36�

If the right end of this shear beam is free, then X 0�L� � 0, the frequency equation is

�S
0
2
�L� � 0 �37�

2. Fixed-®xed beam. The mode shape function of a ®xed-®xed beam has the same expression as that
given in Eq. (36), but the frequency equation is

�S2�L� � 0 �38�
3. Free-free beam. Because the shear force at the free end is equal to zero, Q0 � 0, the mode shape

function, Eq. (35), becomes

X�x� � X0
�S1�x� �39�

The frequency equation can be established according to the boundary condition of the right end, i.e.,
the shear force is equal to zero, as follows
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�S
0
1
�L� � 0 �40�

4. Fixed-spring beam with a concentrated mass at the spring end (Fig. 1).
The boundary conditions for this case are

x � 0, X�0� � 0, x � L, X 0�L� � X�L�
K�L�

ÿ
MLo2 ÿ KL

�
�41�

where K�L� and KL are the shear sti�ness of the beam at x � L and the spring sti�ness at the right
end, respectively.

The mode shape function has the same expression as that given in Eq. (36), but the frequency
equation is

K�L� �S 02�L� � �S2�L�
ÿ
MLo2 ÿ KL

�
�42�

If the right end is free, but with a concentrated mass, then we should let KL � 0 in the above
equation.

5. Spring-spring beam with concentrated masses at the ends (Fig. 2).
The boundary conditions for this case are

x � 0, K�0�X 0�0� � ÿX0

ÿ
M0o2 ÿ K0

�
x � L, K�L�X 0�L� � XL

ÿ
MLo2 ÿ KL

�
�43�

where K(0) and K0 are the shear sti�ness of the beam at x � 0 and the spring sti�ness at the left end,
respectively.

Fig. 1. A ®xed-spring beam with a concentrated mass.

Fig. 2. A spring-spring beam with concentrated masses at the ends.
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The mode shape function can be written as

X�x� � X0

"
�S1�x� ÿ

�S2�x�
K�0�

ÿ
M0o2 ÿ K0

�#
�44�

Using the boundary condition at x � L and setting X0 � 1, one obtains the frequency equation as
follows

K�L� �S 01�L� ÿ
K�L�
K�0�

ÿ
M0o 2 ÿ K0

�
�S
0
2
�L� �

ÿ
MLo2 ÿ KL

�"
�S1�L� ÿ

�S2�L�
K�0�

ÿ
M0o2 ÿ K0

�#
�45�

6. Spring-spring beam with concentrated masses and rectilinear springs at the ends and the �nÿ 1�
intermediate points (Fig. 3).

The boundary conditions for this case are the same as those described in Eq. (43) and the mode
shape function can be written as

X�x� � X1�x� ÿ
Xn
i�1

Xi�li �
K�li �

ÿ
Mio2 ÿ Ki

�
�S2�xÿ li �H�xÿ li � �46�

in which X1�x� is the mode shape function of the ®rst segment and H��� is Heaviside function.
According to the boundary condition at x � 0, we have

X1�x� � X0

"
�S1�x� ÿ

�S2�x�
K�0�

ÿ
M0o2 ÿ K0

�#
�47�

For the ith segment we have the recurrence formula as

Xi�x� � Xiÿ1�x� ÿ Xiÿ1�liÿ1�
K�liÿ1 �

�
Miÿ1o 2 ÿ Kiÿ1

�
�S2�xÿ liÿ1 �H�xÿ liÿ1 � �48�

Setting i � n, X0 � 1 and using the boundary condition at x � L one obtains the frequency equation
as follows

Fig. 3. A one-step beam with spring-spring end and concentrated mass and rectilinear springs at the ends and the other �nÿ 1�
points.
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K�L�X 0nÿ1�L� ÿ
K�L�
K�lnÿ1�

�
Mnÿ1o 2 ÿ Kiÿ1

�
Xnÿ1�lnÿ1 � �S 02�Lÿ lnÿ1� � Xn�L�

ÿ
MLo2 ÿ KL

�
�49�

or

K�L�
(

�S
0
1
�L� ÿ S 02�L�

K�0�
ÿ
M0o2 ÿ K0

�
ÿ
Xn
i�1

Xi�li �
K�li �

�
Mio2 ÿ Ki

�
�S
0
2�Lÿ li �

)

�
ÿ
MLo2ÿ KL

�(
�S1�L� ÿ

�S2�L�
K�0�

ÿ
M0o 2ÿ K0

�
ÿ
Xn
i�1

X�li �
K�li �

�
Mio2ÿ Ki

�
�S2�Lÿ li �H�Lÿ li�

)
�50�

in which Mn �ML

7. Fixed-®xed beam with concentrated masses and rectilinear springs at the �nÿ 1� intermediate
points.

In this case, the mode shape function of the ®rst segment has the same form as that expressed in
Eq. (36), and Xi�x� has the same form as described in Eq. (38), the frequency equation is

X1�L� �
Xnÿ1
i�1

Xi�li �
K�li �

�
Mio2 ÿ Ki

�
�S2�Lÿ li � �51�

3. Solutions for multi-step beams

A multi-step beam consists of n segments, each segment is a non-uniform shear beam, with
concentrated masses and rectilinear springs, as shown in Fig. 4.

If we use �Si1 and �Si2 to represent the basic solutions of the ith step beam, then the mode shape
function of the ith step beam can be expressed as

Xi�x� � Xi�0� �Si1�x� � Qi�0�
Ki�0�

�Si2�x� �52�

Since the displacement of the right end of the �iÿ 1)th segment is equal to that of left end of the ith
segment, one yields

Xi�0� � Xiÿ1�liÿ1 � �53�
While the shear force has a jump, i.e.

Qi�0� � Qiÿ1�liÿ1� ÿ
ÿ
Miÿ1o2 ÿ Kiÿ1

�
Xiÿ1�liÿ1 � �54�

Fig. 4. A ®xed-free multi-step beam.
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or

Qi�0� � Kiÿ1�liÿ1�X 0iÿ1�liÿ1 � ÿ
ÿ
Miÿ1o2 ÿ Kiÿ1

�
Xiÿ1�liÿ1 � �55�

the mode shape function of the ith segment can be expressed as

Xi�x� � Xiÿ1�liÿ1� �Si1�x� � Kiÿ1�liÿ1�
Ki�0�

�
X 0iÿ1�liÿ1 � ÿ

Xiÿ1�liÿ1 �
Kiÿ1�liÿ1 �

ÿ
Miÿ1o2 ÿ Kiÿ1

��
�Si2�x� �56�

in which liÿ1 is the length of the �iÿ 1)th segment, the origin of the co-ordinate is selected at the left end
of this segment.

Eq. (54) is a recurrence formula. According to X1�x� and Eq. (55), we can determine the mode shape
functions of other segments.The frequency equation of this kind of multi-step shear beam can be
obtained by using the boundary conditions

1. Fixed-free beam (Fig. 4). If the left end of the ®rst segment is ®xed, and the right end of the last
segment is free, then, the mode shape function of the ®rst segment has the same expression as that
given in Eq. (36). Setting Q0=K�0� � 1 and using Eq. (55) one obtains the mode shape functions of all
the other segments �i � 2, 3, . . . ,n). The frequency equation is

X 0n�ln� � 0 �57�
Using Eq. (56) and setting i � n, we have

Xnÿ1�lnÿ1� �S 0n1�ln� �
Knÿ1�lnÿ1�
Kn�0�

�
X 0nÿ1�lnÿ1� ÿ

Xnÿ1�liÿ1 �
Knÿ1�lnÿ1�

ÿ
Mnÿ1o 2 ÿ Knÿ1

��
�S
0
n2�ln� � 0 �58�

2. Fixed-®xed beam. If the left end of the ®rst segment and the right end of the last segment are ®xed,
then, the mode shape function of the ®rst segment has the same form as that expressed in Eq. (36),
but the frequency equation is

Xn�ln� � 0 �59�
or

Xnÿ1�lnÿ1� �Sn1�ln� � Knÿ1�lnÿ1�
Kn�0�

�
X 0nÿ1�lnÿ1� ÿ

Xnÿ1�liÿ1 �
Knÿ1�lnÿ1�

ÿ
Mnÿ1o 2 ÿ Knÿ1

��
�Sn2�ln� � 0 �60�

3. Free-free beam. If the left end of the ®rst segment and the right end of the last segment are free, then
the mode shape function of the ®rst segment has the same form as that given in Eq. (39). Setting
X0 � 1 and using Eq. (56) we can determine the mode shape functions of all the other segments
�i � 2, 3, . . . ,n). The frequency equation that can be established by using the boundary condition,
X 0n�ln� � 0, at the right end of the last segment is the same as Eq. (58).

4. Fixed-spring beam with a concentrated mass at the spring end. If the left end of the ®rst segment is
®xed, then the mode shape function has the same form as Eq. (36). Setting Q0=K�0� � 1 and using
Eq. (56) one obtains the mode shape functions of all the other segments �i � 2, 3, . . . ,n). The
frequency equation can be established by use of the boundary condition, described in Eq. (41), at
x � ln, the right end of the last segment as

Kn�ln�X 0n�ln� � Xn�ln�
ÿ
MLo2 ÿ KL

�
�61�

or
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Kn�ln�
�
Xnÿ1�lnÿ1� �S 0n1�ln� �

Knÿ1�lnÿ1�
Kn�0�

�
X 0nÿ1�lnÿ1� ÿ

Xnÿ1�liÿ1 �
Knÿ1�lnÿ1 �

ÿ
Mnÿ1o2 ÿ Knÿ1

��
�S
0
n2�ln�

�

�
ÿ
MLo2 ÿ KL

��
Xnÿ1�lnÿ1� �Sn1�ln � � Knÿ1�lnÿ1 �

Kn�0�
�
X 0nÿ1�lnÿ1� ÿ

Xnÿ1�liÿ1 �
Knÿ1�lnÿ1�

ÿ
Mnÿ1o2

ÿ Knÿ1
��

�Sn2�ln�
�

�62�

5. Spring-spring beam with concentrated masses at the ends. If the left end of the ®rst segment is spring
support with a concentrated mass, then the mode shape function of the beam has the same form as
that given in Eq. (44). Setting X0 � 1 and using Eq. (56), one obtains the mode shape functions of all
the other segments �i � 2, 3, . . . ,n). The frequency equation can be established by use of the boundary
condition at the right end that is supported by a spring and with a concentrated mass in the last
segment.

4. Numerical example 1

To illustrate the proposed method, analysis of free vibrations of a 16-story building with 49.0 m
height located in Beijing (Li et al., 1994) is considered herein. Based on the ®eld measurement of this
building (Li et al., 1994), it can be simpli®ed as a multi-step cantilever shear beam in analysis of free
vibration in the horizontal direction.

The procedure for determining the natural frequencies and mode shapes of this building is as follows

1. Evaluation of the values of mass per unit length and shear sti�ness. The space ¯oor area of each story
is 900 m2. The mass per unit area and the height of the ®rst story are 1490 kg/m2 and 4 m,
respectively. Thus, the mass per unit length in the vertical direction for the ®rst story is found as

�m1 � 1490� 900

4
� 3:353� 105 kg=m

The mass per unit area and the story height for the building stories from the second to the forth
story are1120 kg/m2 and 3 m, respectively. The mass per unit length in the vertical direction from the
second to the forth story is determined as

�m � 1120� 900

3
� 3:36� 105 kg=m

It can be seen that �m1 and �m are almost identical. This means that the mass distribution is
approximately uniform from the ®rst to the fourth story. Thus, this part of building (from the ®rst to
the fourth story) is treated as a one-step uniform shear beam (the ®rst step in Fig. 5) for free
vibration analysis. The mass per unit length in the vertical direction for the ®rst step beam is taken as
3.36� 105 kg/m.

The whole building is divided into four step shear beams with uniformly distributed mass for free
vibration analysis (Fig. 5). The values of mass per unit length for the second, third and fourth step
are found as:

�m2 � 3:18� 105 kg=m, �m3 � 3:07� 105 kg=m, �m4 � 2:89� 105 kg=m

The structural sti�ness which is equal to the sum of the frame sti�ness and the ®ller wall sti�ness are
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determined by the formulas given by Li et al. (1994) as follows:

K1 � 1:13� 1010 N, K2 � 1:02� 1010 N, K3 � 0:96� 1010 N, K4 � 0:88� 1010 N

Fig. 5 shows the distributions of mass and sti�ness.
2. Selection of expressions for describing the mass per unit length and shear sti�ness. According to the

real variations of mass and sti�ness shown in Fig. 5, it is assumed that the distribution of mass and
sti�ness can be treated as continuously varying distributions described by the following forms

K�x� � K0 e
ÿb

x

L �m�x� � �m0 e
ÿg

x

L �63�
According to the values of �m�x� and K�x� at x � 0 and x � L one obtains

K�0� � K0 � 1:13� 1011 N, b � ln
K�0�
K�L� � ln

1:13

0:88
� 0:25

�m�0� � �m0 � 3:36� 105 kg=m, g � ln
�m�0�
�m�L� � ln

3:36

2:89
� 0:15

The distributions of mass and sti�ness given by Eq. (63) are also shown in Fig. 5 (dotted line and
values in parentheses) for comparison purposes.

3. Determination of P�r�: According to Eqs. (63) and (2) one yields

p�r� � aebr, r �
�
K ÿ1�x� dx � L

K0b
e
b
x

L �64�

in which

a � �m0K0, b � ÿ�b� g� �65�
4. Determination of the natural frequencies and mode shape functions. Since P�r� is a special case of the

Case 1, the general solution for mode shape function can be thus found from Eq. (11) and expressed
as

X�x� � C1J0�a ebr=2� � C2Y0
�a ebr=2 � �66�

Using Eqs. (33) and (66) one obtains the basic solutions as

Fig. 5. The distributions of mass and sti�ness of a 16-story building.
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�S1�x� � 1

S1�0�S 02�0� ÿ S2�0�S 01�0�
�
S 02�0�S1�x� ÿ S 01�0�S2�x�

�

�S2�x� � 1

S1�0�S 02�0� ÿ S2�0�S 01�0�
�ÿ S2�0�S1�x� � S1�0�S2�x�

� �67�

in which

S1�x� � J0�a ebr=2�, S2�x� � Y0
�a ebr=2�

S 0i �0� �
dSi�x�

dx
jx�0, i � 1, 2

dS1�x�
dx

� ÿJ1
�
a e

bL
2K0b

ebfx=Lg
�
ab
2K0

e

�
bL

2K0b
ebfx=Lg�b

x

L

�

dS2�x�
dx

� ÿY1

�
a e

bL
2K0b

ebfx=Lg
�
ab
2K0

e

�
bL

2K0b
ebfx=Lg�b

x

L

�

a � 2o� �m0K0 �1=2
b� g

�68�

According to the basic solutions and the boundary conditions at the base, we have

X�x� � Q0

K�0�
�S2�x� �69�

SettingQ0=K�0� � 1 and using the boundary condition at the top, obtain the frequency equation as
follows

J0

�
a e

bL
2K0b

�
Y1

�
a e

bL
2K0b eb

�
� Y0

�
a e

bL
2K0b

�
J1

�
a e

bL
2K0b

eb
�

�70�
Solving Eq. (70) obtains a set of ai �i � 1, 2, . . .�, the minimum value of ai is found as a1 � 1:8112� 109:

Using Eq. (68) one obtains that

o1 � 5:8789 rad=s, T1 � 1:0688 s:

The ®eld measured value of the fundamental natural period is 1.05 s (Li et al., 1994). It is evident that
the computed value of the fundamental natural period is very close to the measured one.

As is well known, several simple formulas for calculating the fundamental natural frequency of
vibration of buildings have been proposed. For example, The Australia Standard for Earthquake
Loading (AS 1170.4) gave

T1 � H

46
�71�

where H is the building height (m).
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Using Eq. (71) one obtains T1 � 1:0652 s for this building.
Based on series of full scale measurements of structural dynamic characteristics of tall buildings, Li et

al. (1994) proposed the following empirical formula for calculating the fundamental natural frequency of
vibration of buildings:

T1 � 0:072Z �72�
where Z is the number of building stories.

Using Eq. (72) one obtains T1 � 1:152 s for this building.
It is clear that the results determined by the empirical formulas (71) and (72) are close to the value

calculated by the proposed method.
Substituting a1 into (58) obtains the fundamental mode shape, X1�x�, the values of which are listed in

Table 1.
The ®eld measured values of the fundamental mode shape (Li et al., 1994) are also listed in Table 1.

It can be seen from Table 1 that the calculated values of the fundamental mode shape show good
agreement with the measured data.

Using the aforementioned procedure, the natural frequencies and mode shapes of higher modes can
be determined. The natural frequencies of the second, third mode shapes are found as o2 � 16:9763 rad/
s, o3 � 27:8945 rad/s, and the corresponding mode shapes are presented in Table 2.

5. Numerical example 2

This numerical example illustrates how to determine the natural frequencies and mode shapes of a
one-story industrial building in terms of the procedure proposed in this paper. A transverse frame of the
building is shown in Fig. 6a.

Because the total weight of all the columns is much less than that of the roof system, all the columns
are simpli®ed as weightless. The roof system is idealized as a uniform shear beam with spring supports
representing closely spaced columns shown in Fig. 6b. The lateral sti�ness of the left and right end walls
is much greater than that of a transverse frame, they are thus treated as hinged supports as shown in
Fig. 6b. (Wang, 1978; Cao et al., 1992)

Table 1

The fundamental mode shape

x/L 0 0. 125 0. 25 0. 375 0. 50 0. 625 0. 75 0. 875 1. 0

Calculated values of X1�x=L� 0 0. 1897 0. 3764 0. 5479 0. 6988 0. 8293 0. 9107 0. 9679 1.0

Measured values of X1�x=L� 0 0. 185 0. 374 0. 548 0. 701 0. 831 0. 911 0. 971 1.0

Table 2

The second and third mode shapes

x/L 0 0. 125 0. 25 0. 375 0. 50 0. 625 0. 875 1.0

X2�x=L� 0 0. 5793 1. 0791 1. 0842 0. 8929 0. 7095 ÿ 0. 5637 ÿ 1.0

X3�x=L� 0 0. 8907 1. 2617 0. 6074 ÿ 0.3914 ÿ1. 2573 ÿ 0. 1379 1.0
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The procedure for determining the natural frequencies and mode shapes of this building is as
follows

1. Determination of the sti�ness of the springs, the mass per unit length and sti�ness of the shear beam is
shown in Fig. 6b. The sti�ness of the uniform shear beam representing the roof system is estimated by
the following formula proposed by Wang (1978):

K � Kidb
2

18:7726n2
�73�

where Ki is the lateral sti�ness of a transverse frame shown in Fig. 6a, which is found as:

Ki � 1:71� 107 N=m, i � 1, 2, 3, 4, 5

where n is the number of columns of the transverse frame, n � 6, d is the lateral length of columns,
d � 6 m, b is the length of the transverse frame, b � 36 m.

Substituting the values of n, d, b and Ki, one obtains

K � 7:998� 108 N

Fig. 6. A one-story industrial building.
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The mass per unit length of the roof system is found as �m � 1:75� 105 kg=m
2. Determination of the basic solutions. The basic solutions can be determined by using Eqs.(12) and (32)

as follows

�S1�x� � cos

 �����
�m

K

r
ox

!
, �S2�x� � 1�����

�m

K

r
o

sin

 �����
�m

K

r
ox

!
�74�

Obviously, the values of �S1�x� and �S2�x� and their ®rst derivatives at x =0 form a unit matrix as
given in Eq. (32).

3. Determination of the natural frequencies and mode shapes. The mode shape function of the ®rst
segment [0, 6 m] is

X1�x� � sin

 �����
�m

K

r
ox

!
�75�

The frequency equation is a special case of Eq. (50), i.e.,

sin

 �����
�m

K

r
oL

!
�
Xnÿ1
i�1

KiXi�li ���������
K �m
p

o
sin

" �����
�m

K

r
o�Lÿ li �

#
� 0 �76�

Xi�x� can be determined by using the following recurrence formula which can be found from Eq. (48)
as follows

Xi�x� � Xiÿ1�x� � Kiÿ1
K

Xiÿ1�liÿ1 � sin

" �����
�m

K

r
o�xÿ liÿ1 �

#
H�xÿ liÿ1� �77�

Solving the frequency equation (77) obtains a set of oi �i � 1, 2, . . .), the fundamental circular natural
frequency, o1, is found as

o1 � 7:1449 rad=s, T1 � 0:8794 s:

The ®eld measured value of T1 is 0.883 s (Cao et al., 1992).

It is evident that the computed value of the fundamental natural period is in good agreement with the
®eld measured one, suggesting that the proposed methods are applicable to engineering application and
practice.

Substituting o1 into Eq. (75) obtains the fundamental mode shape of the ®rst segment [0, 6 m], then
using X1�x� and Eq. (77) obtains the mode shapes of the other �nÿ 1� segments. The values of the
fundamental mode shape of critical sections are calculated and listed in Table 3.

The ®eld measured data of the fundamental mode shape are also listed in Table 3 for comparison
purposes. It can be seen from Table 3 that the calculated fundamental mode shape is very close to the
®eld measured one.

If all the rectilinear springs are treated as an elastic foundation (Fig. 6c) and the coe�cient of which
is determined by

�C � Ki

di
� 1:71

6
� 107 � 2:85� 106 N=m
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then the governing equation of the mode shape function is as

K
d2X

dx 2
ÿ � �mo2 ÿ �C�X � 0 �78�

The general solution of Eq. (78) is

X�x� � X0 cos ax� Q0

aK
sin ax �79�

where

a2 � �mo2 ÿ �C

K
�80�

Using the boundary condition at the left end of the beam obtains X0 � 0, and according to the
boundary condition at the right end one yields the frequency equation as

sin aL � 0 �81�

Thus

aj � jp
L

i � 1, . . . �82�

Substituting Eq. (80) into (82) one obtains

oj �
�������������������������������
jp
L

�2
K

�m
�

�C

�m

s
�83�

Setting j � 1 gives that

o1 � 7:1484 rad=s, T1 � 0:8790 s

Substituting o1 into Eq. (79) and setting X0 � 0, Q0=�aK � � 1, obtain the fundamental mode shape
which is also listed in Table 3.

It is shown from the calculated results presented above that the discrete rectilinear springs can be
treated as an elastic foundation.

Table 3

The fundamental mode shape

x (m) 0 6 12 18 24 30 36

Calculated values 0 0.4992 0.8657 1.0000 0.8657 0.4992 0.0

(0) a (0.5000) (0.8660) (1.0000) (0.8660) (0.5000) (0.0)

Measured values 0 0.494 0.863 1.000 0.863 0.494 0.0

a The values in parentheses are calculated based on the model of a beam on an elastic foundation.
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6. Conclusions

A new exact method that combines the basic solutions with unit matrix property and recurrence
formula developed, is presented herein to determine the natural frequencies and mode shapes of non-
uniform shear beams with classical or non-classical boundary conditions. The function for describing the
distribution of mass is arbitrary, and the distribution of shear sti�ness is expressed as a functional
relation with the mass distribution and vice versa. The governing equation for free vibration of a non-
uniform shear beam is reduced to a di�erential equation of the second-order without the ®rst-order
derivative by means of functional transformation. Then, this kind of di�erential equation is reduced to
Bessel equations and other solvable equations for six cases. The exact solutions of mode shape functions
are thus found. Since the relation between the mass distribution and sti�ness distribution is a functional
expression, an exact solution derived represents a class of exact solutions. The basic solutions, which
have a unit matrix property, are derived and used to obtain the frequency equations and mode shapes
of multi-step shear beams with varying cross-sections. Numerical examples demonstrate that the
calculated natural frequencies and mode shapes of shear-type symmetric buildings are very close to the
corresponding full-scale measurements, suggesting that the proposed methods are applicable to
engineering application and practice. It is also shown that a shear beam with support of the discrete
rectilinear springs can be treated as the beam on an elastic foundation for free vibration analysis.
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